66 research outputs found

    Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere, and its relationship to auroral UV and radio emissions

    Full text link
    We demonstrate that under some magnetospheric conditions protons and oxygen ions are accelerated once per Saturn magnetosphere rotation, at a preferred local time between midnight and dawn. Although enhancements in energetic neutral atom (ENA) emission may in general occur at any local time and at any time in a Saturn rotation, those enhancements that exhibit a recurrence at a period very close to Saturn's rotation period usually recur in the same magnetospheric location. We suggest that these events result from current sheet acceleration in the 15-20 Rs range, probably associated with reconnection and plasmoid formation in Saturn's magnetotail. Simultaneous auroral observations by the Hubble Space Telescope (HST) and the Cassini Ultraviolet Imaging Spectrometer (UVIS) suggest a close correlation between these dynamical magnetospheric events and dawn-side transient auroral brightenings. Likewise, many of the recurrent ENA enhancements coincide closely with bursts of Saturn kilometric radiation, again pointing to possible linkage with high latitude auroral processes. We argue that the rotating azimuthal asymmetry of the ring current pressure revealed in the ENA images creates an associated rotating field aligned current system linking to the ionosphere and driving the correlated auroral processes

    Possible Transient Luminous Events observed in Jupiter's upper atmosphere

    Full text link
    11 transient bright flashes were detected in Jupiter's atmosphere using the UVS instrument on the Juno spacecraft. These bright flashes are only observed in a single spin of the spacecraft and their brightness decays exponentially with time, with a duration of ~1.4 ms. The spectra are dominated by H2 Lyman band emission and based on the level of atmospheric absorption, we estimate a source altitude of 260 km above the 1-bar level. Based on these characteristics, we suggest that these are observations of Transient Luminous Events (TLEs) in Jupiter's upper atmosphere. In particular, we suggest that these are elves, sprites or sprite halos, three types of TLEs that occur in the Earth's upper atmosphere in response to tropospheric lightning strikes. This is supported by visible light imaging, which shows cloud features typical of lightning source regions at the locations of several of the bright flashes. TLEs have previously only been observed on Earth, although theoretical and experimental work has predicted that they should also be present on Jupiter.Comment: Accepted in JGR: Planets. 28 pages, 8 figure

    The Io, Europa and Ganymede auroral footprints at Jupiter in the ultraviolet: positions and equatorial lead angles

    Full text link
    Jupiter's satellite auroral footprints are a consequence of the interaction between the Jovian magnetic field with co-rotating iogenic plasma and the Galilean moons. The disturbances created near the moons propagate as Alfv\'en waves along the magnetic field lines. The position of the moons is therefore "Alfv\'enically" connected to their respective auroral footprint. The angular separation from the instantaneous magnetic footprint can be estimated by the so-called lead angle. That lead angle varies periodically as a function of orbital longitude, since the time for the Alfv\'en waves to reach the Jovian ionosphere varies accordingly. Using spectral images of the Main Alfv\'en Wing auroral spots collected by Juno-UVS during the first forty-three orbits, this work provides the first empirical model of the Io, Europa and Ganymede equatorial lead angles for the northern and southern hemispheres. Alfv\'en travel times between the three innermost Galilean moons to Jupiter's northern and southern hemispheres are estimated from the lead angle measurements. We also demonstrate the accuracy of the mapping from the Juno magnetic field reference model (JRM33) at the completion of the prime mission for M-shells extending to at least 15RJ . Finally, we shows how the added knowledge of the lead angle can improve the interpretation of the moon-induced decametric emissions.Comment: 20 pages, 8 figures, Accepted for publication in Journal of Geophysical Research: Space Physics on 20 April 202

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Properties of Jupiter’s auroral acceleration region inferred with HST-STIS spectral images

    Full text link
    Jupiter’s dynamic auroral region is the signature of magnetosphere-ionosphere coupling. Precipitating auroral electrons are part of a current system which transports angular momentum from the planetary atmosphere to sub-corotating magnetospheric plasma. The magnitude of the currents and hence precipitating energy flux, are sensitive to the characteristics of the high-latitude magnetosphere, in particular the location of the auroral acceleration region (AAR) and the density and temperature of the high-latitude electron population. We use HST STIS observations of Jupiter’s aurora (Gustin et al. [2016]) to infer the location of the AAR and the properties of the precipitating auroral electrons. To do this, we determine the energy of the precipitating electrons and incident energy flux for the two distinct regions within the main aurora and within flare regions. The resulting relationships between energy flux and electron precipitation energy for the main auroral emission are then compared to the theoretical relationship derived by Lundin & Sandahl [1978], in order to derive the location of the AAR and the temperatures and densities of the electrons at the top of the AAR prior to acceleration. We find that that each emission region is best reproduced using a multiple auroral acceleration regions with different properties, rather than a single auroral acceleration region with a varying potential drop strength

    Estimated energy balance in the jovian upper atmosphere during an auroral heating event

    Full text link
    We present an analysis of a series of observations of the auroral/polar regions of Jupiter, carried out between September 8 and 11, 1998, making use of the high-resolution spectrometer, CSHELL, on the NASA InfraRed Telescope Facility (IRTF), Mauna Kea, Hawaii; these observations spanned an ``auroral heating event". This analysis combines the measured line intensities and ion velocities with a one-dimensional model of the jovian thermosphere/ionosphere (Grodent et al. 2001). We compute the model line intensities both assuming local thermodynamic equilibrium (LTE) and, relaxing this condition (non-LTE), through detailed balance calculations (Oka et al. 2004), in order to compare with the observations. Taking the model parameters derived, we calculate the changes in heating rate required to account for the modeled temperature profiles that are consistent with the measured line intensities. Comparison of the various heating and cooling terms enables us to investigate the balance of energy inputs into the auroral/polar atmosphere. Increases in Joule heating and ion drag are sufficient to explain the observed heating of the atmosphere; increased particle precipitation makes only a minor heating contribution. But local cooling effects - predominantly H[SUB]3[SUP]+[/SUP][/SUB] radiation-to-space - are shown to be too inefficient to allow the atmosphere to relax back to pre-event thermal conditions. Thus we conclude that this event provides observational, i.e. empirical, evidence that heat must be transported away from the auroral/polar regions by thermally or mechanically driven winds

    A multi-scale magnetotail reconnection event at Saturn and associated flows: Cassini/UVIS auroral observations

    Full text link
    We present high-resolution Cassini/UVIS (Ultraviolet Imaging Spectrograph) observations of Saturn's aurora during May 2013 (DOY 140-141). The observations reveal an enhanced auroral activity in the midnight-dawn quadrant in an extended local time sector (~02 to 05 LT), which rotates with an average velocity of ~ 45% of rigid corotation. The auroral dawn enhancement reported here, given its observed location and brightness, is most probably due to hot tenuous plasma carried inward in fast moving flux tubes returning from a tail reconnection site to the dayside. These flux tubes could generate intense field-aligned currents that would cause aurora to brighten. However, the origin of tail reconnection (solar wind or internally driven) is uncertain. Based mainly on the flux variations, which do not demonstrate flux closure, we suggest that the most plausible scenario is that of internally driven tail reconnection which operates on closed field lines. The observations also reveal multiple intensifications within the enhanced region suggesting an x-line in the tail, which extends from 02 to 05 LT. The localised enhancements evolve in arc and spot-like small scale features, which resemble vortices mainly in the beginning of the sequence. These auroral features could be related to plasma flows enhanced from reconnection which diverge into multiple narrow channels then spread azimuthally and radially. We suggest that the evolution of tail reconnection at Saturn may be pictured by an ensemble of numerous narrow current wedges or that inward transport initiated in the reconnection region could be explained by multiple localised flow burst events. The formation of vortical-like structures could then be related to field-aligned currents, building up in vortical flows in the tail. An alternative, but less plausible, scenario could be that the small scale auroral structures are related to viscous interactions involving small-scale reconnection

    The HST UV Auroral Imaging Campaign of Jupiter and Saturn during the International Heliophysical Year

    Full text link
    An extended campaign of observations of the UV auroral emissions from Jupiter and Saturn is scheduled for three periods beginning in Jan. 2007 and ending in late June 2008. This will be by far the most extensive series of remote high resolution imaging of planetary aurora to date, and should provide new physical insight into the cause and effect relationships governing the controlling processes for the giant planet auroral emissions. These observations will overlap with in situ measurements of local solar wind and magnetospheric plasma conditions by Cassini at Saturn in Jan. 2007 and by the New Horizons mission approaching Jupiter in Feb. 2007. The UV auroral emission brightness and distributions will also be compared with extrapolated estimates of the solar wind conditions near each planet from periods just before planetary opposition in Jan. 2007 (Saturn) and June 2007 (Jupiter). The HST observations will also be coordinated with ground-based observations of near-IR auroral and nonthermal radio emissions. This paper will give an overview of the program, including the schedule of HST observations and the schedule of known coordinated observations. While a preliminary schedule has been submitted for the HST observations, this schedule will be finalized only when the HST orbit is sufficiently well known for the periods of observation for detailed pointing to be specified. By the time of Fall AGU, it should be possible to show the detailed schedule and pointing for the Jan-Feb 2007 observations. The paper will include a presentation of the plans for the rapid reduction and distribution of the HST auroral images to the community

    The Ultraviolet Spectrograph on NASA’s Juno Mission

    Get PDF
    The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter’s far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno’s other remote sensing instruments and used to place in situ measurements made by Juno’s particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter’s magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS
    corecore